|
[À±À¯½Ä, ±èÀºÁø] ±â¾ïÇÒ¸¸ÇÑ °ü±¤°æÇè(MTE)¼¼ºÐ Áý´Ü¿¡ µû¸¥ °ü±¤¸ñÀûÁö À̹ÌÁö, ¸¸Á·µµ ¹× ÇൿÀǵµ Â÷ÀÌ¿¬±¸ |
|
±è¹Ì¼º |
|
18-08-30 14:30 |
|
323 |
³í¹®¸í |
±â¾ïÇÒ¸¸ÇÑ °ü±¤°æÇè(MTE)¼¼ºÐ Áý´Ü¿¡ µû¸¥ °ü±¤¸ñÀûÁö À̹ÌÁö, ¸¸Á·µµ ¹× ÇൿÀǵµ Â÷ÀÌ¿¬±¸ |
ÀúÀÚ(Âü¿©Àη¸í) |
À±À¯½Ä, ±èÀºÁø |
°ÔÀçÁö¸í |
°ü±¤¿¬±¸Àú³Î |
Çٽɾî |
Memorable tourism experiences, Image, Satisfaction, Loyalty, Segmentation, ±â¾ïÇÒ¸¸ÇÑ °ü±¤°æÇè(MTE), À̹ÌÁö, ¸¸Á·µµ, Ã漺µµ, ±ºÁýºÐ¼® |
ÃÊ·Ï |
The purpose of this study was to investigate market segmentation of memorable travel experiences to see if there were any differences among the segmented groups according to tourism destination image, satisfaction, and intention-to-behavior. From the literature review, the measurement scales and indicators of memorable travel experiences were developed and revised. A total of 275 questionnaires were collected from respondents who had travel experiences within the past one year. Factor analysis showed that there were nine underlying dimensions of memorable travel experiences and three underlying dimensions of tourism destination images. Cluster analysis with nine MTE factors suggested that four cluster solutions were appropriate in segmenting memorable travel experiences. MANOVA and Chi-square analysis showed that there were differences among segmented groups and concluded that the higher memorable travel experiences segmented groups were more likely to have had satisfying travel experiences and to behave positively in the future. The results of this study would be helpful for tourism destination marketers and tourism product developers.
º» ¿¬±¸´Â °ü±¤Áö¿¡¼ °æÇèÇÏ´Â °ü±¤°æÇèÀÇ ¾î¶°ÇÑ ¿ä¼Ò°¡ °ü±¤°æÇèÀ» Àå±âÀûÀ¸·Î ±â¾ï¿¡ ³²°Ô ÇÏ´ÂÁö ½ÇÁúÀûÀÎ ¼Ó¼ºÀ» ±Ô¸íÇÏ°íÀÚ ÇÏ¿´´Ù. ÀÌ¿¡ º» ¿¬±¸´Â ÃÖ±Ù 1³â°£ °ü±¤°æÇèÀÌ ÀÖ´Â »ç¶÷µéÀ» ´ë»óÀ¸·Î ÇÏ¿© ½ÇÁõ¿¬±¸¸¦ ½Ç½ÃÇÏ°íÀÚ ÇÏ¿´À¸¸ç, ±â¾ï¿¡ ³²´Â °ü±¤°æÇèÀ» Ãß±¸ÇÏ´Â Áý´ÜÀ» ¼¼ºÐÈÇÏ¿© °¢ Áý´Ü °£ °ü±¤Áö À̹ÌÁö, ¸¸Á·µµ, Ã漺µµ ¹× °¢ ¼¼ºÐ½ÃÀåÀÇ Æ¯¼º¿¡ ´ëÇÑ Â÷À̸¦ »ìÆ캸°íÀÚ ÇÏ¿´´Ù. ¼±Ç࿬±¸¸¦ ÅëÇÏ¿© ±â¾ï¿¡ ³²´Â °ü±¤°æÇè¿¡ ´ëÇÑ º¯¼ö¸¦ µµÃâÇÏ¿© ±¹³»ÀÇ »óȲ¿¡ ¸Â°Ô Àû¿ëÇÏ°íÀÚ ÇÏ¿´À¸¸ç, ÃÑ 275ºÎ¸¦ ÃÖÁ¾ ºÐ¼®¿¡ È°¿ëÇÏ¿´´Ù. º» ¿¬±¸´Â ±â¾ï¿¡ ³²´Â °ü±¤°æÇè°ú °ü±¤ÁöÀ̹ÌÁö¿¡ ´ëÇÑ ¿äÀκм®À» ½Ç½ÃÇÏ¿´À¸¸ç, ±â¾ï¿¡ ³²´Â °ü±¤°æÇèÀÇ ¿äÀÎÀ» È°¿ëÇÑ ±ºÁýºÐ¼®(Cluster Analysis)°ú ÆǺ°ºÐ¼®(MDA) ±×¸®°í °¢ ±ºÁýº° °ü±¤Áö À̹ÌÁö ¹× ¸¸Á·µµ Ã漺µµ¿¡ ´ëÇÑ MANOVA ºÐ¼®, °¢ ±ºÁýº° ÀϹÝÀûÀΠƯ¼º¿¡ µû¸¥ Chi-square ºÐ¼®°ú ´ëÀÀÀÏÄ¡ºÐ¼®(Correspondence Analysis)À» ½Ç½ÃÇÏ¿´´Ù. ºÐ¼®°á°ú ´Ù¾çÇÑ °ü±¤°æÇèÀ» ÅëÇÏ¿© °ü±¤Áö¿¡ ´ëÇÑ »õ·Ó°í ÀλóÀûÀÎ °æÇè°ú ¿©Çà¸ñÀûÁöÀÇ ÀÌÇØ°ü°èÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇÑ ÁøÁ¤ÇÑ Áö¿ª °æÇèÀÌ Æ÷°ýÀûÀ¸·Î ÀÌ·ç¾îÁú ¶§ ´õ¿í ±â¾ï¿¡ ³²´Â °ü±¤°æÇèÀÌ µÉ ¼ö ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. ´Ù¾çÇÑ °ü±¤°æÇèÀ» Ãß±¸ÇÏ´Â Áý´Ü°ú Áö¿ª ¹× µ¶Æ¯ÇÑ °æÇèÀ» °Á¶ÇÏ´Â Áý´ÜÀϼö·Ï °ü±¤°æÇè¿¡ ´õ¿í ¸¸Á·ÇÏ°í ³ôÀº Ã漺µµ¸¦ ³ªÅ¸³µ´Ù. º» ¿¬±¸´Â ¾î¶°ÇÑ °ü±¤°æÇèÀÌ Àå±âÀûÀ¸·Î ±â¾ï¿¡ ³²´ÂÁö¸¦ ÆľÇÇÔÀ¸·Î¼ ¸ñÀûÁö¸¶ÄÉÆÃÀÇ Ãø¸é¿¡¼ °ü±¤°´À» ÀÌÇØÇÏ°í À̵鿡°Ô ¸Â´Â °ü±¤ÄÁÅÙÃ÷¸¦ °³¹ßÇϴµ¥ ±àÁ¤ÀûÀÎ ¿µÇâÀ» °¡Á®´Ù ÁÙ °ÍÀ¸·Î º¸ÀδÙ. |
|
|